Recognition of human activities with wearable sensors
نویسندگان
چکیده
A novel approach for recognizing human activities with wearable sensors is investigated in this article. The key techniques of this approach include the generalized discriminant analysis (GDA) and the relevance vector machines (RVM). The feature vectors extracted from the measured signal are processed by GDA, with its dimension remarkably reduced from 350 to 12 while fully maintaining the most discriminative information. The reduced feature vectors are then classified by the RVM technique according to an extended multiclass model, which shows good convergence characteristic. Experimental results on the Wearable Action Recognition Dataset demonstrate that our approach achieves an encouraging recognition rate of 99.2%, true positive rate of 99.18% and false positive rate of 0.07%. Although in most cases, the support vector machines model has more than 70 support vectors, the number of relevance vectors related to different activities is always not more than 4, which implies a great simplicity in the classifier structure. Our approach is expected to have potential in real-time applications or solving problems with large-scale datasets, due to its perfect recognition performance, strong ability in feature reduction, and simple classifier structure.
منابع مشابه
Accelerometer vs. Electromyogram in Activity Recognition
Activity recognition; Wearable sensor; Acceleration; Electromyogram; Unseen activities In this study, information from wearable sensors is used to recognize human activities. Commonly the approaches are based on accelerometer data while in this study the potential of electromyogram (EMG) signals in activity recognition is studied. The electromyogram data is used in two different scenarios: 1) r...
متن کاملThe Effect of Radio Waves on the Quality and Safety of Wearable Sensors in Healthcare
The industrial Internet of Things (IoT) is aiming to interconnect humans, machines, materials, processes and services in a network. Wireless Sensor Network (WSN) comprises the less power consuming, light weight and effective Sensor Nodes (SNs) for higher network performance. Radio Frequency Identification (RFID) and sensor networks are both wireless technologies that provide limitless future po...
متن کاملIdentifying Important Action Primitives for High Level Activity Recognition
Smart homes have a user centered design that makes human activity as the most important type of context to adapt the environment according to people’s needs. Sensor systems that include a variety of ambient, vision based, and wearable sensors are used to collect and transmit data to reasoning algorithms to recognize human activities at different levels of abstraction. Despite various types of a...
متن کاملA Novel Wearable Sensor-Based Human Activity Recognition Approach Using Artificial Hydrocarbon Networks
Human activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearab...
متن کاملHuman activity recognition with wearable sensors
This thesis investigates the use of wearable sensors to recognize human activity. The activity of the user is one example of context information – others include the user’s location or the state of his environment – which can help computer applications to adapt to the user depending on the situation. In this thesis we use wearable sensors – mainly accelerometers – to record, model and recognize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012